• Title of article

    Tailoring the pressure drop of structured packings through CFD simulations

  • Author/Authors

    Faical Larachi ، نويسنده , , Catalin Florin Petre، نويسنده , , Ion Iliuta، نويسنده , , Bernard Grandjean، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    7
  • From page
    535
  • To page
    541
  • Abstract
    A computational fluid dynamic methodology is proposed to breakdown into elementary dissipation mechanisms the overall single-phase gas flow bed pressure drop in towers containing corrugated sheet structured packings. The goal behind was to allow piecewise geometry optimization of such packings in terms of capacity enlargement and efficiency enhancement. The dissipations sorted in order of decreasing importance were the collision losses by jet streams at criss-crossing junctions within corrugated channels, elbow loss by form drag at interlayer transition, elbow loss by jets striking wall and subsequent flow redirection to upper channels, and elbow loss in bed entrance. Replacement of sharp bends at the interlayer junctions by progressive direction change was beneficial for the reduction of the dissipations at the wall and the interlayer junction thus stretching capacity of the structured packing. However, this improvement was not spectacular because the most energy-intensive component (criss-crossing) remained unaffected by such modifications. Computational fluid dynamics is foreseen to be a successful, rapid and economic tool to theoretically explore new geometries coping with this limitation.
  • Keywords
    Pressure drop , Structured packing , Computational fluid dynamics
  • Journal title
    Chemical Engineering and Processing: Process Intensification
  • Serial Year
    2003
  • Journal title
    Chemical Engineering and Processing: Process Intensification
  • Record number

    417911