Title of article :
Grate-firing of biomass for heat and power production
Author/Authors :
Chungen Yin، نويسنده , , Lasse A. Rosendahl، نويسنده , , S?ren K. K?r، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
30
From page :
725
To page :
754
Abstract :
As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide. Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can fire a wide range of fuels of varying moisture content, and requires less fuel preparation and handling. The basic objective of this paper is to review the state-of-the-art knowledge on grate-fired boilers burning biomass: the key elements in the firing system and the development, the important combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion, modelling and computational fluid dynamics (CFD) simulations are discussed in detail. The literature survey and discussions are primarily pertaining to grate-fired boilers burning biomass, though these issues are more or less general. Other technologies (e.g., fluidized bed combustion or suspension combustion) are also mentioned or discussed, to some extent, mainly for comparison and to better illustrate the special characteristics of grate-firing of biomass. Based on these, some critical problems, which may not be sufficiently resolved by the existing efforts and have to be addressed by future research and development, are outlined.
Keywords :
Deposit formation , particulate matter , Corrosion , CFD , fluidized bed , grate-fired boiler , BIOMASS , Pollutant emission
Journal title :
Progress in Energy and Combustion Science
Serial Year :
2008
Journal title :
Progress in Energy and Combustion Science
Record number :
420520
Link To Document :
بازگشت