Title of article :
Simultaneous tridiagonalization of two symmetric matrices
Author/Authors :
Seamus D. Garvey، نويسنده , , FranCoise Tisseur، نويسنده , , Michael I. Friswell، نويسنده , , John E. T. Penny، نويسنده , , Uwe Prells، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
We show how to simultaneously reduce a pair of symmetric matrices to tridiagonal form by congruence
transformations. No assumptions are made on the non-singularity or de niteness of the two matrices.
The reduction follows a strategy similar to the one used for the tridiagonalization of a single symmetric
matrix via Householder re ectors. Two algorithms are proposed, one using non-orthogonal rank-one
modi cations of the identity matrix and the other, more costly but more stable, using a combination
of Householder re ectors and non-orthogonal rank-one modi cations of the identity matrix with minimal
condition numbers. Each of these tridiagonalization processes requires O(n3) arithmetic operations
and respects the symmetry of the problem. We illustrate and compare the two algorithms with some
numerical experiments
Keywords :
symmetric matrices , Generalized eigenvalue problem , symmetricquadratic eigenvalue problem , tridiagonalization
Journal title :
International Journal for Numerical Methods in Engineering
Journal title :
International Journal for Numerical Methods in Engineering