Title of article :
An efficient numerical method for the solution of sliding contact problems
Author/Authors :
Lifeng Ma، نويسنده , , M. A. Lifeng and Alexander M. Korsunsky ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
20
From page :
1236
To page :
1255
Abstract :
In this paper, an efficient numerical method to solve sliding contact problems is proposed. Explicit formulae for the Gauss–Jacobi numerical integration scheme appropriate for the singular integral equations of the second kind with Cauchy kernels are derived. The resulting quadrature formulae for the integrals are valid at nodal points determined from the zeroes of a Jacobi polynomial. Gaussian quadratures obtained in this manner involve fixed nodal points and are exact for polynomials of degree 2n − 1, where n is the number of nodes. From this Gauss–Jacobi quadrature, the existing Gauss– Chebyshev quadrature formulas can be easily derived. Another apparent advantage of this method is its ability to capture correctly the singular or regular behaviour of the tractions at the edge of the region of contact. Also, this analysis shows that once if the total normal load and the friction coefficient are given, the external moment M and contact eccentricity e (for incomplete contact) in fully sliding contact are uniquely determined. Finally, numerical solutions are computed for two typical contact cases, including sliding Hertzian contact and a sliding contact between a flat punch with rounded corners pressed against the flat surface of a semi-infinite elastic solid. These results provide a demonstration of the validity of the proposed method
Keywords :
Gauss–Jacobi quadrature , singular integral equations , frictional contact problem
Journal title :
International Journal for Numerical Methods in Engineering
Serial Year :
2005
Journal title :
International Journal for Numerical Methods in Engineering
Record number :
425533
Link To Document :
بازگشت