Title of article :
Computer Simulation of Strong Ground Motion near a Fault Using Dynamic Fault Rupture Modeling: Spatial Distribution of the Peak Ground Velocity Vectors
Author/Authors :
T. Miyatake ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2000
Pages :
19
From page :
2063
To page :
2081
Abstract :
Computer simulation was used to study the nature of the strong ground motion near a strike-slip fault. The faulting process was modeled by stress release with fixed rupture velocity in a uniform elastic half-space or layered half-space. The fourth-order 3-D finite-difference method with staggered grids was employed to compute both ground motions and slip histories on the fault. The fault rupture was assumed to start from a point and propagate circularly with 0.8 times shear-wave velocity. In the present paper, we focused on the spatial pattern of ground velocity vectors, i.e., the direction of strong motions. In the case of bilateral rupture propagation, the strong fault parallel ground motion appeared near the center of the fault. The fault normal motions of ground velocity appeared near the edges of the fault. In the case of unilateral rupture, the fault parallel motion appeared near the starting point however, the amplitude was lower than that for the bilateral rupture case. The fault normal motion was predominant near the terminal point of the rupture. The results were applied to the earthquake damage data, especially the directions that simple bodies overturned and wooden houses collapsed, caused by the 1927 Tango, the 1930 Kita-Izu, and the 1948 Fukui earthquakes. The spatial distributions of the direction data were found to reflect the strong ground motions generated from the earthquake source process.
Keywords :
strong ground motion , source process.
Journal title :
Pure and Applied Geophysics
Serial Year :
2000
Journal title :
Pure and Applied Geophysics
Record number :
429280
Link To Document :
بازگشت