Title of article :
SUR estimation of multiple time-series models with heteroscedasticity and serial correlation of unknown form
Author/Authors :
Creel، نويسنده , , Michael; Farell، نويسنده , , Montserrat ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Abstract :
Ordinary least squares (OLS) estimation with non-parametric estimation of the coefficientʹs covariance matrix is a widely used procedure when the pattern of correlations of the errors is unknown. With multiple time series the seemingly unrelated regressions (SUR) estimator is a natural alternative to OLS. Simulation results show that the SUR estimator can be substantially more efficient than OLS. A non-parametric covariance matrix estimator is still required to deal with remaining heteroscedasticity and serial correlation. Further refinements are possible when there is more specific prior information on the conditional autocovariances.
Keywords :
Non-parametric covariance matrix estimation , Multiple time-series models
Journal title :
Economics Letters
Journal title :
Economics Letters