Title of article :
Nutritional interactions in mixed species forests: a synthesis
Author/Authors :
Rothe، Andreas نويسنده , , Binkley، Dan نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
-1854
From page :
1855
To page :
0
Abstract :
For more than a century, scientists have considered whether mixtures of tree species may differ in nutrition and yield relative to monocultures. We review the empirical evidence on the nutritional interactions of tree species in mixtures, including information on foliar nutrition, soil nutrient supply, rates of nutrient input, and patterns of root distribution. Linear effects were most common, with mixtures intermediate in value between monocultures. In some cases, values for mixtures were lower than expected, indicating an antagonistic interaction. A few cases that included nitrogenfixing species showed a synergistic interaction, with mixtures showing higher values than monocultures. Nutrient concentrations in foliage of Sitka spruce (Picea sitchensis (Bong.) Carrière) were improved in mixtures with other conifers in three studies, in contrast to four studies with mixtures of various conifers and hardwoods that showed no effect of mixtures on foliage nutrient concentrations. Mixtures that combine species with and without the ability to fix atmospheric nitrogen have shown a full range of foliar responses from decreases to increases in phosphorus, to increases in nitrogen, to no effect of mixtures. Rates of litter decomposition usually showed no effect of species mixtures, but a few cases demonstrated both increases and decreases in decomposition relative to monocultures. Pools of soil nutrients generally did not differ between mixtures and monocultures. Root distributions in mixtures of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) were altered in mixtures; compared with monocultures, spruce rooted more shallowly in mixtures with beech, and beech rooted more deeply in mixtures with spruce. General conclusions are limited by the small number of studies that directly addressed mixed-species effects in forests, and the wide variety of observed interactions. Further research would be particularly helpful in identifying situations where nonlinear interactions may develop, including the species and site conditions that promote nonlinear interactions. Neighborhood methods, which analyze the relationship between stand composition and nutritional properties on a small spatial scale, offer great potential for exploring nutritional effects in mixed-species stands.
Keywords :
Declarative programming languages , Simulation of dynamical systems , Biological processes , Stream , Collection
Journal title :
CANADIAN JOURNAL OF FOREST RESEARCH
Serial Year :
2001
Journal title :
CANADIAN JOURNAL OF FOREST RESEARCH
Record number :
43547
Link To Document :
بازگشت