Author/Authors :
C. Armenta-Deu، نويسنده , , T. Donaire، نويسنده ,
Abstract :
The capacity of lead/acid batteries decreases with the number of cycles. This process is known as ageing. The reduction of capacity affects not only the operation time but also the performance of the accumulator and of the system attached to the battery. One of the main procedures affected by the battery ageing is the determination of the state-of-charge. In this paper, a parameter called ‘ageing factor’, fa, which represents the reduction of the available energy in lead/acid batteries, is introduced. A method to calculate this factory and its incidence on battery performance has also been developed. The method is intended to predict ‘ageing’ effects on lead/acid batteries as a non-destructive method, as well as on-line battery operation. The method is based on the effective reduction in electrolyte specific gravity in a fully charged lead/acid battery computed from the change of the slope of the electrolyte density during charge with the number of cycles, and the subsequent reduction in discharge time. A correlation process between the reduction of the energy delivered by the electrochemical cell, the reduction of the discharge time, and the apparent change of the slope of electrolyte density has been developed, resulting in an analytical expression that may be used to compute the effective reduction in available energy in lead/acid batteries. The results of the experiments have proven the merit of the proposed system: the predicted values are in good agreement with experimental data, the associated error in the a estimation being lower than 9%, a result which has been considered acceptable to validate the proposed method.