Title of article :
High yield hydrogen production from low CO selectivity ethanol steam reforming over modified Ni/Y2O3 catalysts at low temperature for fuel cell application
Author/Authors :
Jie Sun، نويسنده , , Dingfa Luo، نويسنده , , Pu Xiao، نويسنده , , Li Jigang، نويسنده , , Shanshan Yu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
385
To page :
391
Abstract :
Ethanol–water mixtures were converted directly into H2 with 67.6% yield and >98% conversion by catalytic steam reforming at 350 °C over modified Ni/Y2O3 catalysts heat treated at 500 °C. XRD was used to test the structure and calculate the grain sizes of the samples with different scan rates. The initial reaction kinetics of ethanol over modified and unmodified Ni/Y2O3 catalysts were studied by steady state reaction and a first-order reaction with respect to ethanol was found. TPD was used to analyze mechanism of ethanol desorption over Ni/Y2O3 catalyst. Rapid vaporization, efficiency tube reactor and catalyst were used so that homogeneous reactions producing carbon, acetaldehyde, and carbon monoxide could be minimized. And even no CO detective measured during the first 49 h reforming test on the modified catalyst Ni/Y2O3. This process has great potential for low cost H2 generation in fuel cells for small portable applications where liquid fuel storage is essential and where systems must be small, simple, and robust.
Keywords :
Hydrogen productionLow CO selectivityEthanol steam reformingFuel cell
Journal title :
Journal of Power Sources
Serial Year :
2008
Journal title :
Journal of Power Sources
Record number :
443212
Link To Document :
بازگشت