Title of article :
Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries
Author/Authors :
Prasanth Raghavan، نويسنده , , Jaewon Choi، نويسنده , , Jou-Hyeon Ahn، نويسنده , , Gouri Cheruvally، نويسنده , , Ghanshyam S. Chauhan، نويسنده , , Hyo-Jun Ahn، نويسنده , , Changwoon Nah، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
437
To page :
443
Abstract :
Composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) {P(VdF-HFP)} and different composition of silica have been prepared by electrospinning polymer solution containing in situ generated silica. These membranes are made up of fibers of 1–2 μm diameters. These fibers are stacked in layers to produce fully interconnected pores that results in high porosity. Polymer electrolytes were prepared by immobilizing 1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) in the membranes. The composite membranes exhibit a high electrolyte uptake of 550–600%. The optimum electrochemical properties have been observed for the polymer electrolyte containing 6% in situ silica to show ionic conductivity of 8.06 mS cm−1 at 20 °C, electrolyte retention ratio of 0.85, anodic stability up to 4.6 V versus Li/Li+, and a good compatibility with lithium metal resulting in low interfacial resistance. A first cycle specific capacity of 170 mAh g−1 was obtained when the polymer electrolyte was evaluated in a Li/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C, corresponding to 100% utilization of the cathode material. The properties of composite membrane prepared with in situ silica were observed to be comparatively better than the one prepared by direct addition of silica.
Keywords :
Polymer electrolyteElectrospinningLithium batteriesFibrous membraneIn situ SiO2
Journal title :
Journal of Power Sources
Serial Year :
2008
Journal title :
Journal of Power Sources
Record number :
443220
Link To Document :
بازگشت