Title of article :
The design of stationary and mobile solid oxide fuel cell–gas turbine systems
Author/Authors :
Wolfgang Winkler، نويسنده , , Hagen Lorenz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
A general thermodynamic model has shown that combined fuel cell cycles may reach an electric-efficiency of more than 80%. This value is one of the targets of the Department of Energy (DOE) solid oxide fuel cell–gas turbine (SOFC–GT) program. The combination of a SOFC and GT connects the air flow of the heat engine and the cell cooling. The principle strategy in order to reach high electrical-efficiencies is to avoid a high excess air for the cell cooling and heat losses. Simple combined SOFC–GT cycles show an efficiency between 60 and 72%. The combination of the SOFC and the GT can be done by using an external cooling or by dividing the stack into multiple sub-stacks with a GT behind each sub-stack as the necessary heat sink. The heat exchangers (HEXs) of a system with an external cooling have the benefit of a pressurization on both sides and therefore, have a high heat exchange coefficient. The pressurization on both sides delivers a low stress to the HEX material. The combination of both principles leads to a reheat (RH)-SOFC–GT cycle that can be improved by a steam turbine (ST) cycle. The first results of a study of such a RH-SOFC–GT–ST cycle indicate that a cycle design with an efficiency of more than 80% is possible and confirm the predictions by the theoretical thermodynamic model mentioned above. The extremely short heat-up time of a thin tubular SOFC and the market entrance of the micro-turbines give the option of using these SOFC–GT designs for mobile applications. The possible use of hydrocarbons such as diesel oil is an important benefit of the SOFC. The micro-turbine and the SOFC stack will be matched depending on the start-up requirements of the mobile system. The minimization of the volume needed is a key issue. The efficiency of small GTs is lower than the efficiency of large GTs due to the influence of the leakage within the stages of GTs increasing with a decreasing size of the GT. Thus, the SOFC module pressure must be lower than in larger stationary SOFC–GT systems. This leads to an electrical-efficiency of 45% of a cycle used as a basis for a design study. The result of the design study is that the space available in a mid-class car allows the placement of such a system, including space reserves. A further improvement of the system might allow an electrical-efficiency of about 55%.
Keywords :
Gas turbines , steam turbines , fuel cells
Journal title :
Journal of Power Sources
Journal title :
Journal of Power Sources