Author/Authors :
Q. H. Zuo، نويسنده , , H. L. SCHREYER، نويسنده ,
Abstract :
For a conservative system, the only possible instability is of divergence type. For a
nonconservativesy stem,h owever,i nstabilityc an be of divergencef,l uttero r both, dependingo n the
amount of nonconservativenesIsn. this paper, we study the instabilityo f a cantileveredb eam and
a simplys upportedp late,s ubjectedto a combinationo f fixeda nd followerf orces.A nonconservative
parameteri s introducedt o providea llp ossiblec ombinationso f thesef orces.F or the beam,i nstability
changesf rom divergenceto fluttera t a criticalv alueo f this parameter.F or valueso f the parameter
above the criticalv alue,t he flutter instabilityr emainsa s the only instabilityp attern, in contrast to
implications in the literature. For the plate, the instability is governed by flutter for a certain range
of the nonconservative parameter, even though divergence instability still exists. The range depends
on the geometry (aspect ratio) and material property (Poisson’s ratio) of the plate.