Title of article
Flutter and divergence instability of nonconservative beams and plates
Author/Authors
Q. H. Zuo، نويسنده , , H. L. SCHREYER، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1996
Pages
13
From page
1355
To page
1367
Abstract
For a conservative system, the only possible instability is of divergence type. For a
nonconservativesy stem,h owever,i nstabilityc an be of divergencef,l uttero r both, dependingo n the
amount of nonconservativenesIsn. this paper, we study the instabilityo f a cantileveredb eam and
a simplys upportedp late,s ubjectedto a combinationo f fixeda nd followerf orces.A nonconservative
parameteri s introducedt o providea llp ossiblec ombinationso f thesef orces.F or the beam,i nstability
changesf rom divergenceto fluttera t a criticalv alueo f this parameter.F or valueso f the parameter
above the criticalv alue,t he flutter instabilityr emainsa s the only instabilityp attern, in contrast to
implications in the literature. For the plate, the instability is governed by flutter for a certain range
of the nonconservative parameter, even though divergence instability still exists. The range depends
on the geometry (aspect ratio) and material property (Poisson’s ratio) of the plate.
Journal title
International Journal of Solids and Structures
Serial Year
1996
Journal title
International Journal of Solids and Structures
Record number
445876
Link To Document