• Title of article

    A method for approximating the density of maximum-likelihood and maximum a posteriori estimates under a Gaussian noise model

  • Author/Authors

    Craig K. Abbey، نويسنده , , Eric Clarkson، نويسنده , , Harrison H. Barrett، نويسنده , , Stefan P. Müller، نويسنده , , Frank J. Rybicki، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1998
  • Pages
    9
  • From page
    395
  • To page
    403
  • Abstract
    The performance of maximum-likelihood (ML) and maximum a posteriori (MAP) estimates in non-linear problems at low data SNR is not well predicted by the Cramér-Rao or other lower bounds on variance. In order to better characterize the distribution of ML and MAP estimates under these conditions, we derive a point approximation to density values of the conditional distribution of such estimates. In an example problem, this approximate distribution captures the essential features of the distribution of ML estimates in the presence of Gaussian-distributed noise.
  • Keywords
    Cramér-Rao bound , Maximum-likelihood estimation , quantitation
  • Journal title
    Medical Image Analysis
  • Serial Year
    1998
  • Journal title
    Medical Image Analysis
  • Record number

    449673