Title of article :
A sliding-distance-coupled finite element formulation for polyethylene wear in total hip arthroplasty
Author/Authors :
Tina A. Maxian، نويسنده , , Thomas D. Brown، نويسنده , , Douglas R. Pedersen، نويسنده , , John J. Callaghan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Abstract :
A three-dimensional, nonlinear contact finite element (FE) model of total hip replacement, linked to a sliding-distance-coupled wear algorithm, was used to study polyethylene wear rates for three different femoral head sizes. Hip resultant loads from a validated gait analysis model were used in the FE model to determine contact stress distributions on the polyethylene bearing surface, for 16 discrete instants of stance phase. Sliding distances of points on the femoral head surface were obtained from the corresponding flexion/extension kinematics. Wear rates were determined by a custom-written computer program that used a relationship that coupled contact stress, sliding distance, and a pin-on-disk determined wear coefficient. The wear rates computed by this formulation were well within clinically observed ranges for each component size.
Keywords :
Polyethylene , Sliding distance. , WEAR , Finite element , Contact stress
Journal title :
Journal of Biomechanics
Journal title :
Journal of Biomechanics