Title of article :
Relevance of Coronary Microvascular Flow Impairment to Long-Term Remodeling and Systolic Dysfunction in Hypertrophic Cardiomyopathy Original Research Article
Author/Authors :
Iacopo Olivotto، نويسنده , , Franco Cecchi، نويسنده , , Roberto Gistri، نويسنده , , Roberto Lorenzoni، نويسنده , , Giampaolo Chiriatti، نويسنده , , Francesca Girolami، نويسنده , , Francesca Torricelli، نويسنده , , Paolo G. Camici، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Objectives
This study sought to evaluate whether the entity of microvascular dysfunction, assessed by positron emission tomography (PET), predicts the long-term development of left ventricular (LV) remodeling and systolic dysfunction in hypertrophic cardiomyopathy (HCM).
Background
A subgroup of patients with HCM developed LV dilation and systolic impairment. A causal role of coronary microvascular dysfunction has been suggested as the underlying pathophysiological mechanism.
Methods
Fifty-one patients (New York Heart Association functional class I to II) were followed up for 8.1 ± 2.1 years after measurement of resting and dipyridamole (Dip) myocardial blood flow (MBF). Left ventricular systolic dysfunction was defined as an ejection fraction (LVEF) <50%.
Results
The Dip-MBF was blunted in HCM patients compared with a group of healthy control patients (1.50 ± 0.69 ml/min/g vs. 2.71 ± 0.94 ml/min/g; p < 0.001). At final evaluation, 11 patients (22%) had an LVEF <50%; in most (n = 7), systolic dysfunction was associated with a significant increase in LV cavity dimensions (>5 mm) during follow-up. These 11 patients showed lower Dip-MBF than the 40 with preserved LV function (1.04 ± 0.38 ml/min/g vs. 1.63 ± 0.71 ml/min/g, respectively; p = 0.001); Dip-MBF was particularly blunted in five patients with clinical progression to severe heart failure symptoms or death (Dip-MBF 0.89 ± 0.15 ml/min/g). At multivariate analysis, the two independent predictors of systolic dysfunction were Dip-MBF in the lowest tertile (<1.1 ml/min/g; relative hazard, 7.5; p = 0.038) and an end-diastolic LV dimension in the highest tertile (>45 mm; relative hazard, 12.3; p = 0.031).
Conclusions
Severe microvascular dysfunction is a potent long-term predictor of adverse LV remodeling and systolic dysfunction in HCM. Our findings indicate microvascular dysfunction as a potential target for prevention of disease progression and heart failure in HCM.
Keywords :
PET , positron emission tomography , hypertrophic cardiomyopathy , Dipyridamole , DIP , HCM , LV , left ventricle/ventricular , NYHA , New York Heart Association , MBF , myocardial blood flow
Journal title :
JACC (Journal of the American College of Cardiology)
Journal title :
JACC (Journal of the American College of Cardiology)