Title of article :
Quantum computation, non-demolition measurements, and reflective control in living systems
Author/Authors :
Igamberdiev، Abir U. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Internal computation underlies robust non-equilibrium living process. The smallest details of living systems are molecular devices that realize non-demolition quantum measurements. These smaller devices form larger devices (macromolecular complexes), up to living body. The quantum device possesses its own potential internal quantum state (IQS), which is maintained for a prolonged time via reflective error-correction. Decoherence-free IQS can exhibit itself by a creative generation of iteration limits in the real world. It resembles the properties of a quasi-particle, which interacts with the surround, applying decoherence commands to it. In this framework, enzymes are molecular automata of the extremal quantum computer, the set of which maintains highly ordered robust coherent state, and genome represents a concatenation of errorcorrecting codes into a single reflective set. The biological evolution can be viewed as a functional evolution of measurement constraints in which limits of iteration are established, possessing criteria of perfection and having selective values.
Keywords :
Quantum computation , Limit of iteration , Coherence , Measurement , Reflection , Internal quantum state
Journal title :
BioSystems
Journal title :
BioSystems