Title of article :
Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat
Author/Authors :
Xueguo Zhang، نويسنده , , Ronald Fogel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
19
From page :
19
To page :
37
Abstract :
Vago-vagal reflexes play an integral role in the regulation of gastrointestinal function. Although there have been a number of reports describing the effects of various stimuli on the firing rates of vagal afferent fibers and vagal motor neurons, little is known regarding the neurotransmitters that mediate the vago-vagal reflexes. In the present work, we investigated the role of glutamate in the vago-vagal reflex induced by gastrointestinal distention. Using single-cell recording techniques, we determined the effects of gastric and duodenal distention on the firing rates of gut-related neurons in the dorsal vagal complex, in the absence and presence of glutamate antagonists. Kynurenic acid, a competitive glutamate receptor antagonist, injected into the dorsal vagal complex, blocked the neuronal response of neurons in the dorsal motor nucleus of the vagus and the nucleus of the solitary tract to gastrointestinal distention. Injection of glutamate into the nucleus of the solitary tract produced inhibition of dorsal motor nucleus of the vagus neurons that were also inhibited by gastric and/or duodenal distention. Thus, the distention-induced inhibition of dorsal motor nucleus of the vagus neurons may be mediated by glutamate-induced excitation of gut-related nucleus of the solitary tract neurons. To investigate the role of the various glutamate receptor subtypes in the distention-induced events, we studied the effects of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a selective non-NMDA receptor antagonist, and DL-2-amino-5-phosphonopentanoic acid ( DL-AP5), a selective NMDA receptor antagonist. CNQX injected into the dorsal vagal complex either blocked or attenuated the inhibitory response of the neurons in the dorsal motor nucleus of the vagus and nucleus of the solitary tract neurons to gastric and duodenal distention. In contrast, -AP5 had less effect, especially in the vago-vagal reflex elicited by gastric distention. The results suggest (1) distention activates vagal afferents in the gastrointestinal tract; (2) the central branches of the vagal afferents from the gut terminate in the nucleus of the solitary tract and release glutamate that mainly act on non-NMDA receptors; (3) glutamate activates the inhibitory neurons in the nucleus of the solitary tract that project to the dorsal motor nucleus of the vagus; and (4) the inhibitory neurotransmitter suppresses the activity of the dorsal motor nucleus of the vagus neurons. For the excitatory neuronal responses of the dorsal motor nucleus of the vagus neurons to gastrointestinal distention, the possible circuit is that the vagal afferents containing glutamate directly activate the receptors on the dendrites of the dorsal motor nucleus of the vagus.
Keywords :
gastrointestinal tract , Excitatory amino acids , vagus nerve , Dorsal motor nucleus of the vagus , Solitary nucleus
Journal title :
Autonomic Neuroscience: Basic and Clinical
Serial Year :
2002
Journal title :
Autonomic Neuroscience: Basic and Clinical
Record number :
475607
Link To Document :
بازگشت