Author/Authors :
Kazuo Ogawa، نويسنده , , Tetsuko Kojima، نويسنده , , Chinami Matsumoto، نويسنده , , Satoshi Kamegai، نويسنده , , Takuya Oyama، نويسنده , , Yukari Shibagaki، نويسنده , , Hiroshi Muramoto، نويسنده , , Tetsuo Kawasaki، نويسنده , , Hiroshi Fujinaga، نويسنده , , Kozo Takahashi، نويسنده , , Hiroaki Hikiami، نويسنده , , Hirozo Goto، نويسنده , , Chizuru Kiga، نويسنده , , Keiichi Koizumi، نويسنده , , Hiroaki Sakurai، نويسنده , , Yutaka Shimada، نويسنده , , Dang Duc Trong and Masahiro Yamamoto ، نويسنده , , Katsutoshi Terasawa، نويسنده , , Shuichi Takeda، نويسنده , , Ikuo Saiki، نويسنده ,
Abstract :
Objectives:
Kampo (Japanese traditional herbal) medicines are now ethically used in Japan as pharmaceutical grade prescription drugs. However, there are distinct groups of responders and non-responders to Kampo medicines. We searched for biomarker candidates to discriminate responders from non-responders to keishibukuryogan (KBG); one of the most frequently used Kampo medicines.
Design and methods:
A combination of SELDI technology and a decision tree analysis with proprietary developed bioinformatics tools was applied to 41 (32 for tree construction and 9 for validation test) plasma samples obtained from rheumatoid arthritis (RA) patients. A candidate biomarker protein was identified using LC–MS/MS.
Results:
The constructed tree with measurable reliability contained only a single peak which was identified as haptoglobin alpha 1 chain (Hpα1).
Conclusion:
Hpα1 is a biomarker candidate for discriminating responders from non-responders to KBG treatment for RA. The present results may open the way to the establishment of “evidence-based” complementary and alternative medicine.
Keywords :
haptoglobin , Responder , Kampo medicine , Keishibukuryogan , SELDI–TOF MS , Cross detector , Peak separability analysis