Title of article :
Patellofemoral joint kinetics during squatting in collegiate women athletes
Author/Authors :
George J. Salem، نويسنده , , Christopher M. Powers، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
Objective. To characterize the biomechanics of the patellofemoral joint during squatting in collegiate women athletes.
Design. Repeated measures experimental design.
Background. Although squatting exercises are required components of most intercollegiate resistance-training programs and are commonly performed during rehabilitation, the effects of various squatting depths on patellofemoral joint stress have not been quantified.
Methods. Anthropometric data, three-dimensional knee kinematics, and ground reaction forces were used to calculate the knee extensor moment (inverse dynamics approach) in five intercollegiate female athletes during squatting exercise at three different depths (approximately 70°, 90° and 110° of knee flexion). A biomechanical model of the patellofemoral joint was used to quantify the patellofemoral joint reaction force and patellofemoral joint stress during each trial.
Results. Peak knee extensor moment, patellofemoral joint reaction force and patellofemoral joint stress did not vary significantly between the three squatting trials.
Conclusions. Squatting from 70° to 110° of knee flexion had little effect on patellofemoral joint kinetics. The relative constancy of the patellofemoral joint reaction force and joint stress appeared to be related to a consistent knee extensor moment produced across the three squatting depths.
Keywords :
Patellofemoral joint reaction force , Patellofemoral joint , Knee extensor moment , Patellofemoral joint stress , Squatting
Journal title :
Clinical Biomechanics
Journal title :
Clinical Biomechanics