• Title of article

    Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation

  • Author/Authors

    ORegan، Donal نويسنده , , Ji، Chunyan نويسنده , , Jiang، Daqing نويسنده , , Shi، Ningzhong نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    -76
  • From page
    77
  • To page
    0
  • Abstract
    This paper discusses a randomized logistic equation dx(t)=x(t)[(a-bx(t))dt+x(theta)(t)dB(t)] with initial value x(0)=x0>0, where B(t) is a standard one-dimension Brownian motion, and (theta)(epsilon)(0, 0.5). We show that the positive solution of the stochastic differential equation does not explode at any finite time under certain conditions. In addition, we study the existence, uniqueness, boundedness, stochastic persistence and global stability of the positive solution.
  • Keywords
    generalized Newtonian fluids , variational methods , a posteriori error estimates
  • Journal title
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Serial Year
    2007
  • Journal title
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Record number

    48613