Title of article
Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation
Author/Authors
ORegan، Donal نويسنده , , Ji، Chunyan نويسنده , , Jiang، Daqing نويسنده , , Shi، Ningzhong نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
-76
From page
77
To page
0
Abstract
This paper discusses a randomized logistic equation dx(t)=x(t)[(a-bx(t))dt+x(theta)(t)dB(t)] with initial value x(0)=x0>0, where B(t) is a standard one-dimension Brownian motion, and (theta)(epsilon)(0, 0.5). We show that the positive solution of the stochastic differential equation does not explode at any finite time under certain conditions. In addition, we study the existence, uniqueness, boundedness, stochastic persistence and global stability of the positive solution.
Keywords
generalized Newtonian fluids , variational methods , a posteriori error estimates
Journal title
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Serial Year
2007
Journal title
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Record number
48613
Link To Document