Title of article :
Convergence rates toward the travelling waves for a model system of the radiating gas
Author/Authors :
Nishikawa، Masataka نويسنده , , Nishibata، Shinya نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
-648
From page :
649
To page :
0
Abstract :
The present paper is concerned with an asymptotics of a solution to the model system of radiating gas. The previous researches have shown that the solution converges to a travelling wave with a rate (1 + t)-1/4 as time t tends to infinity provided that an initial data is given by a small perturbation from the travelling wave in the suitable Sobolev space and the perturbation is integrable. In this paper, we make more elaborate analysis under suitable assumptions on initial data in order to obtain shaper convergence rates than previous researches. The first result is that if the initial data decays at the spatial asymptotic point with a certain algebraic rate, then this rate reflects the time asymptotic convergence rate. Precisely, this convergence rate is completely same as the spatial convergence rate of the initial perturbation. The second result is that if the initial data is given by the Riemann data, an admissible weak solution, which has a discontinuity, converges to the travelling wave exponentially fast. Both of two results are proved by obtaining decay estimates in time through energy methods with suitably chosen weight functions.
Keywords :
asymptotic stability , shock wave , hyperbolic-elliptic coupled system
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Serial Year :
2007
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Record number :
48641
Link To Document :
بازگشت