Title of article :
Global existence and uniform stability of solutions for a quasilinear viscoelastic problem
Author/Authors :
Messaoudi، Salim A. نويسنده , , Tatar، Nasser-eddine نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
-664
From page :
665
To page :
0
Abstract :
In this paper the nonlinear viscoelastic wave equation in canonical form |u(t)|(rho)u(tt) - (delta)u - (delta)u(tt) + integral(t)(o) g(t - (tau)) (delta) u(tau)d (tau) = b|u|(p-2)u with Dirichlet boundary condition is considered. By introducing a new functional and using the potential well method, we show that the damping induced by the viscoelastic term is enough to ensure global existence and uniform decay of solutions provided that the initial data are in some stable set.
Keywords :
global existence , exponential decay , nonlinear source , Viscoelasticity , polynomial decay , relaxation function
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Serial Year :
2007
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Record number :
48642
Link To Document :
بازگشت