Title of article :
Blow-up analysis for a system of heat equations coupled via nonlinear boundary conditions
Author/Authors :
Song، Xianfa نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
-1134
From page :
1135
To page :
0
Abstract :
In this paper, we study a system of heat equations ut=(delta)u,vt=(delta)v in (omega)*(0,T) coupled via nonlinear boundary conditions (partial)u=epv (partial)u/(partial)n=uq on (partial)(omega)+(0,T)(partial)u/(partial)n=epv,(partial)u (partial)n=uq on ((partial)(omega)*(0,T) Here p, q>0. We prove that the solutions always blow up in finite time for non-trivial and non-negative initial values. We also prove that the blow-up occurs only on SR = (partial)BR for (omega)= BR = {x (epsilon)Rn:|x|
Keywords :
system of heat equations , blow-up rate , nonlinear boundary conditions , blow-up set
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Serial Year :
2007
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Record number :
48668
بازگشت