Title of article :
Cyclic loading inhibits expression of MMP-3 but not MMP-1 in an in vitro rabbit flexor tendon model
Author/Authors :
Krishna R. Asundi، نويسنده , , David M. Rempel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
5
From page :
117
To page :
121
Abstract :
Background Gene expression analysis is useful for assessing cellular behavior and may improve our understanding of the initial cellular response to mechanical load leading to tendon degeneration. This study assessed gene expression of MMP-1 and MMP-3, genes associated with matrix degradation, in tendons exposed to cyclic loads within physiologic range. Methods Six flexor tendons from each of ten New Zealand White rabbits were harvested and randomly assigned to one of the following six groups: load deprived for 18 h; cyclically loaded for 18 h to a peak stress of 2 MPa; 3 MPa; 4 MPa; 5 MPa; or snap frozen in liquid nitrogen. MMP-1, MMP-3 and 18 s mRNA expression was measured by qRT-PCR. Findings No significant differences in MMP-1 mRNA expression levels were found between loading groups. MMP-3 expression was significantly inhibited (57%) in tendons cyclically loaded to a peak stress of 4 MPa in comparison to load deprived tendons, however, when peak stress was increased to 5 MPa, expression was no longer significantly lower compared to stress shielded tendons. Interpretation The results suggest a ‘U’ shape relationship between load and MMP-3 expression. The lack of change in MMP-1 expression with loading was unexpected as inhibition of MMP-1 in response to mechanical load has been demonstrated in previous studies. In conclusion, we demonstrate that MMP-3 expression is modulated by cyclic load and is sensitive to load magnitude. MMP-1 mRNA expression is not significantly modulated by cyclic load in this model.
Keywords :
Tendinopathy , Overuse injury , Dynamic tissue loading , Organ culture , matrix metalloproteinase
Journal title :
Clinical Biomechanics
Serial Year :
2008
Journal title :
Clinical Biomechanics
Record number :
486817
Link To Document :
بازگشت