Title of article :
Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for semisingularly perturbed reaction-diffusion problems
Author/Authors :
Zhu، Guoqing نويسنده , , Chen، Shaochun نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
-1386
From page :
1387
To page :
0
Abstract :
The numerical approximation by a lower-order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving semisingular perturbation problems. The quasi-optimal-order error estimates are proved in the (epsilon)-weighted H1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in (epsilon)-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.
Keywords :
hysteresis operators , Prandtl-Ishlinskii model , von Mises model , beam equation , elastoplasticity
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Serial Year :
2008
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Record number :
48807
Link To Document :
بازگشت