Title of article
Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for semisingularly perturbed reaction-diffusion problems
Author/Authors
Zhu، Guoqing نويسنده , , Chen، Shaochun نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
-1386
From page
1387
To page
0
Abstract
The numerical approximation by a lower-order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving semisingular perturbation problems. The quasi-optimal-order error estimates are proved in the (epsilon)-weighted H1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in (epsilon)-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.
Keywords
hysteresis operators , Prandtl-Ishlinskii model , von Mises model , beam equation , elastoplasticity
Journal title
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Serial Year
2008
Journal title
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Record number
48807
Link To Document