• Title of article

    Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for semisingularly perturbed reaction-diffusion problems

  • Author/Authors

    Zhu، Guoqing نويسنده , , Chen، Shaochun نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    -1386
  • From page
    1387
  • To page
    0
  • Abstract
    The numerical approximation by a lower-order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving semisingular perturbation problems. The quasi-optimal-order error estimates are proved in the (epsilon)-weighted H1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in (epsilon)-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.
  • Keywords
    hysteresis operators , Prandtl-Ishlinskii model , von Mises model , beam equation , elastoplasticity
  • Journal title
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Serial Year
    2008
  • Journal title
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Record number

    48807