Title of article :
Osteoprotegerin mitigates tail suspension-induced osteopenia
Author/Authors :
T.A. Bateman، نويسنده , , C.R. Dunstan، نويسنده , , V.L. Ferguson، نويسنده , , D.L. Lacey، نويسنده , , R.A. Ayers، نويسنده , , S.J. Simske، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
Osteoprotegerin (OPG) is a recently discovered protein related to the tumor necrosis factor receptor family. It has been shown to inhibit ovariectomy (ovx)-induced resorption in rats and increase bone mineral density in young mice. Tail suspension is a procedure that inhibits bone formation in maturing rodents. This study was designed to quantify OPG’s effect on cortical bone formation. Fifty-four mice were assigned to one of five groups (n = 10–11/group). A baseline control group was killed on day 0 of the 10 day study. The remaining groups were: vivarium housed (nonsuspended) control mice receiving 0.3 mg/kg per day OPG; vivarium control mice receiving daily placebo injections; tail-suspended mice receiving 0.3 mg/kg per day OPG; and tail-suspended mice receiving placebo injections. Tetracycline was administered on days 0 and 8. OPG treatment of tail-suspended mice produced mechanical properties similar to those of placebo-treated, vivarium-housed mice: structural stiffness (8.5%, 20.7%) and elastic (13.9%, 10.1%) and maximum (4.7%, 8.1%) force were increased compared with placebo controls (vivarium, suspended groups). Percent mineral composition was highly significantly greater (p< 0.001 for all comparisons) for OPG-treated mice in the femur, tibia, and humerus, relative to placebo treatment. Matrix mass was also significantly increased in the femur, although not to the same degree as mineral mass. OPG decreased the amount of femoral endocortical resorption compared with the placebo-treated groups for both vivarium (27%) and suspended (24%) mice. Administration of OPG significantly decreased endocortical formation of the tibia. Periosteal bone formation rates were not altered by OPG. OPG-mitigated tail suspension induced osteopenia not by returning bone formation to normal levels, but by inhibiting resorption and increasing percent mineral composition.
Keywords :
osteoprotegerin , Mechanical testing , Histomorphometry , Tail suspension , Microhardness , Disuse.