Title of article
Gene therapy with human osteoprotegerin decreases callus remodeling with limited effects on biomechanical properties
Author/Authors
Michael Ulrich-Vinther، نويسنده , , Edward M. Schwarz، نويسنده , , Finn S. Pedersen، نويسنده , , Kjeld Soballe، نويسنده , , Troels T. Andreassen، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2005
Pages
8
From page
751
To page
758
Abstract
Osteoprotegerin (OPG) is a naturally occurring protein, which prevents bone resorption by inhibition of osteoclastogenesis, function, and survival. Therefore, recombinant OPG may be an attractive drug in the treatment of chronic bone resorptive diseases such as osteoporosis. Gene therapy has the potential to achieve long-term treatment by delivering genes of anti-resorptive proteins to the recipient. The effects of OPG gene therapy on fracture healing have not been described previously.
The influence of OPG gene therapy on callus formation, callus tissue structural strength, apparent material properties, and histology of tibia fractures in rats was investigated after 3 weeks and 8 weeks of healing. Intramuscular administration of adeno-associated virus (AAV) vector-mediated OPG resulted in increased levels of OPG in serum of approximately 100 ng/ml throughout the study period. Control animals with fractures received transduction with an AAV reporter gene construct (AAV-enhanced green fluorescent protein (eGFP)), and in this group serum OPG levels remained at baseline (<10 ng/ml). After 3 weeks of healing, AAV-OPG treatment reduced the number of osteoclasts in the callus tissue (33%, P < 0.001). However, AAV-OPG treatment did not influence callus dimensions, callus bone mineral content (BMC), fracture structural strength, or apparent callus tissue material properties. After 8 weeks of healing, AAV-OPG treatment reduced the number of osteoclasts in the callus tissue (31%, P < 0.001) compared with AAV-eGFP fractures. Furthermore, deposition of new woven bone at the fracture line of the original cortical bone was hampered (new woven bone present: in all AAV-eGFP animals, in 41% of AAV-OPG-treated animals, P < 0.001). AAV-OPG treatment also increased callus BMC (18%, P = 0.023) compared with AAV-eGFP fractures. AAV-OPG did not influence callus dimensions, structural strength of the fractures, or ultimate stress, whereas elastic modulus was reduced in the AAV-OPG groups (37%, P = 0.039). The experiment demonstrates that AAV-OPG gene therapy decreases the fracture remodeling, but this does not influence the structural strength of healing fractures.
Keywords
AAV , Osteoprotegerin , Fracture healing , Gene Therapy
Journal title
Bone
Serial Year
2005
Journal title
Bone
Record number
495652
Link To Document