Title of article :
Mechanical regulation of PTHrP expression in entheses
Author/Authors :
Xuesong Chen، نويسنده , , Carolyn Macica، نويسنده , , Ali Nasiri، نويسنده , , Stefan Judex، نويسنده , , Arthur E. Broadus، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
8
From page :
752
To page :
759
Abstract :
The PTHrP gene is expressed in the periosteum and in tendon and ligament insertion sites in a PTHrP-lacZ knockin reporter mouse. Here, we present a more detailed histological evaluation of PTHrP expression in these sites and study the effects of mechanical force on PTHrP expression in selected sites. We studied the periosteum and selected entheses by histological, histochemical, and in situ hybridization histochemical techniques, and tendons or ligaments were unloaded by tail suspension or surgical transection. In the periosteum, PTHrP is expressed in the fibrous layer and the type 1 PTH/PTHrP receptor (PTH1R) in the subjacent cambial layer. PTHrP has distinct temporospatial patterns of expression in the periosteum, one hot spot being the metaphyseal periosteum in growing animals. PTHrP is also strongly expressed in a number of fibrous insertion sites. In the tibia these include the insertions of the medial collateral ligament (MCL) and the semimembranosus (SM). In young animals, the MCL and SM sites display a combination of underlying osteoblastic and osteoclastic activities that may be associated with the migration of these entheses during linear growth. Unloading the MCL and SM by tail suspension or surgical transection leads to a marked decrease in PTHrP/lacZ expression and a rapid disappearance of the subjacent osteoblastic population. We have not been able to identify PTHrP-lacZ in any internal bone cell population in the PTHrP-lacZ knockin mouse in either a CD-1 or C57Bl/6 genetic background. In conclusion, we have identified PTHrP expression in surface structures that connect skeletal elements to each other and to surrounding muscle but not in intrinsic internal bone cell populations. In these surface sites, mechanical force seems to be an important regulator of PTHrP expression. In selected sites and/or at specific times, PTHrP may influence the recruitment and/or activities of underlying bone cell populations.
Keywords :
PTHrP , Periosteum , Enthesis , Tendon and ligament insertion sites , Mechanical loading
Journal title :
Bone
Serial Year :
2007
Journal title :
Bone
Record number :
496543
Link To Document :
بازگشت