Title of article :
Quantitative structure–activity relationships by evolved neural networks for the inhibition of dihydrofolate reductase by pyrimidines
Author/Authors :
Dana G. Landavazo، نويسنده , , Gary B. Fogel، نويسنده , , David B. Fogel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Evolutionary computation provides a useful method for training neural networks in the face of multiple local optima. This paper begins with a description of methods for quantitative structure activity relationships (QSAR). An overview of artificial neural networks for pattern recognition problems such as QSAR is presented and extended with the description of how evolutionary computation can be used to evolve neural networks. Experiments are conducted to examine QSAR for the inhibition of dihydrofolate reductase by pyrimidines using evolved neural networks. Results indicate the utility of evolutionary algorithms and neural networks for the predictive task at hand. Furthermore, results that are comparable or perhaps better than those published previously were obtained using only a small fraction of the previously required degrees of freedom.
Keywords :
Quantitative structure–activity relationships , Dihydrofolate reductase , Evolutionary computation , Artificial neural networks
Journal title :
BioSystems
Journal title :
BioSystems