Title of article :
Effects of water content and initiator composition on photopolymerization of a model BisGMA/HEMA resin
Author/Authors :
Xinglin Guo، نويسنده , , Yong Wang، نويسنده , , Paulette Spencer، نويسنده , , Qiang Ye، نويسنده , , Xiaomei Yao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Aims
The purpose of this study was to evaluate the effects of photoinitiator type and water content on the polymerization rate (Rp) and degree of conversion (DC) of a model BisGMA/HEMA-based resin.
Materials and methods
The comonomer mixture consisted of BisGMA/HEMA (60/40 by weight). Different two- or three-component photoinitiator systems were incorporated. Two-component systems were 0.5% CQ (camphorquinone) and 0.5% DMAEMA (2-(dimethylamino) ethyl methacrylate) or 0.5% CQ and 0.5% 4E (ethyl 4-dimethylaminobenzoate). The three-component systems were added 1% DPIHP (diphenyliodonium hexafluorophosphate) to the above systems. Each system was tested as made, or after addition of 5, 10, 15 wt% water. When cured under a conventional dental light, the Rp and DC of each formulation was determined using time-resolved attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy.
Results
For mixtures containing two-component initiator systems, when the hydrophobic initiator CQ was used in combination with hydrophilic DMAEMA, Rps and DCs were dramatically decreased as a function of water content. The Rps and DCs of the hydrophobic CQ/4E system were higher than those of the CQ/DMAEMA system in the presence of water. For three-component initiator systems, incorporation of DPIHP enhanced the polymerization of all mixtures in the presence of water compared to their counterpart two-component initiators. Interestingly, the CQ/DMAEMA caused greater DC and Rp when DPIHP was used.
Significance
The hydrophobicity/hydrophilicity of photoinitiator components significantly affects both the DC as well as Rp when in the presence of water. The results indicate that formulation of photoinitiator components should be based on the effectiveness of the bonding systems under both dry and wet conditions.
Keywords :
dental adhesives , photopolymerization , FTIR , Photoinitiator , Degree of conversion
Journal title :
Dental Materials
Journal title :
Dental Materials