Title of article :
Biosensing Based on Light Absorption of Nanoscaled Gold and Silver Particles
Author/Authors :
Frederix، Filip نويسنده , , Maes، Guido نويسنده , , Borghs، Gustaaf نويسنده , , Friedt، Jean-Michel نويسنده , , Choi، Kang-Hoon نويسنده , , Laureyn، Wim نويسنده , , Campitelli، Andrew نويسنده , , Mondelaers، Dirk نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Pages :
-6893
From page :
6894
To page :
0
Abstract :
The absorption spectrum of noble metal spherical nanoparticles is known to be strongly influenced by the dielectric constant of the surrounding material, and as such, these particles are well suited for biosensing applications. To perform biosensing using nanoparticles on a substrate, the metal particles are covalently attached onto quartz using an organic adhesion layer of mercaptosilanes. The particles in solution are characterized by UV-vis spectroscopy and transmission electron microscopy, while those attached to the quartz are characterized with UV-vis spectroscopy and atomic force microscopy. Antibodies are attached to the metal nanoparticles, and the antigen recognition is monitored via the change of light absorption when this binding event occurs. Not only is the absorbance originating from plasmon resonances of the particles influenced by the dielectric properties of molecules attached to the nanospheres but also the interband absorption of the particles changes, which will be demonstrated in this report. A light absorption change is detected when a molecular recognition occurs between the bioreceptor molecules attached to the nanoparticle and a biomolecular counterpart. This change in absorption can be very large when adhered molecules are at resonance (interband transitions). In addition, the presented type of biosensing can be a cost-effective and easy to use alternative to conventional biosensing techniques.
Keywords :
Yield gains , Shelterbelts , Hedges , Crop yields , Field margins
Journal title :
Analytical Chemistry
Serial Year :
2003
Journal title :
Analytical Chemistry
Record number :
51730
Link To Document :
بازگشت