Title of article :
Effects of G6PD Overexpression in NIH3T3 Cells Treated with Tert-Butyl Hydroperoxide or Paraquat
Author/Authors :
Wei-Ying Kuo، نويسنده , , Tang K. Tang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
The major physiological role of glucose-6-phosphate dehydrogenase (G6PD) is to provide NADPH, which is required for reductive biosynthesis and for detoxification of free radicals and peroxides in mature red blood cells. To study the function of G6PD in non-erythroid cells, we examined the sensitivity of NIH3T3 cells transfected with a plasmid containing human G6PD cDNA to tert-butyl hydroperoxide (TBH) and paraquat. Two transfected clones which had a sixteen-fold (H7 clone) and six-fold (H6 clone) increase in their intracellular G6PD activity were compared with control cells transfected with a vector alone. Cells with high-level expression of human G6PD were 2.3 (H6) to 3.7 (H7) times more resistant to TBH than control cells. The antioxidant (anti-TBH) abilities in H6 and H7 cells were revealed by (1) a significant increase in the intracellular level of NADPH and glutathione, (2) a reduction of fluorescent intensity of the oxidant-sensitive dye, 2′,7′-dichlorofluorescin diacetate, and (3) a significant reduction in the production of oxidized adducts generated by lipid peroxidation. In contrast, cells overexpressing G6PD were very sensitive to paraquat, a superoxide-producing herbicide. The concentrations of paraquat required to produce a 50% decrease in cell viability of H7, H6 and control cells were 0.80 mM, 1.14 mM, and 2.19 mM, respectively. The cytotoxicity of paraquat correlated with the expression level of NADPH in the cells. In this study, overexpression of human G6PD in NIH3T3 cells had different effects on the toxicity of TBH vs. paraquat. Reduction of NADP+ to NADPH by G6PD protects cells from oxidative damage by TBH, but appears to enhance the toxicity of paraquat.
Keywords :
antioxidant , TBH , Paraquat , oxidative stress , free radical , G6PD
Journal title :
Free Radical Biology and Medicine
Journal title :
Free Radical Biology and Medicine