Title of article :
EPR imaging for in vivo analysis of the half-life of a nitroxide radical in the hippocampus and cerebral cortex of rats after epileptic seizures
Author/Authors :
Hidekatsu Yokoyama، نويسنده , , Yijing Lin، نويسنده , , Osamu Itoh، نويسنده , , Yuto Ueda، نويسنده , , Akira Nakajima، نويسنده , , Tateaki Ogata، نويسنده , , Toshiyuki Sato، نويسنده , , Hiroaki Ohya-Nishiguchi، نويسنده , , Hitoshi Kamada، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
Recently, we developed an in vivo temporal electron paramagnetic resonance (EPR) imaging technique to be applied to the brain of a rat, into which a blood-brain barrier (BBB)-permeable nitroxide radical, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM) was injected intraperitoneally. This imaging technique made it possible to measure decay rates of a nitroxide radical in multiple regions of the brain simultaneously. Using this technique, the half-life of PCAM was estimated from the exponential decay of the signal intensity derived from the temporal EPR images in the hippocampus and cerebral cortex of rats after a kainic acid (KA)-induced seizure. The hippocampal half-life of PCAM after KA-induced seizures was significantly prolonged (p < .01), whereas the prolongation of the cortical half-life was not significant. These findings suggest that following a KA-seizure, the intrahippocampal ability to reduce the nitroxide radical is impaired, but the ability is intact in the cerebral cortex. This is the first in vivo quantitative EPR imaging study that has a bearing on the pathogenesis of KA-induced seizures in the brain.
Keywords :
reductant , free radicals , Temporal EPR imaging , Kainic acid , Epileptic seizure , Nitroxide radical , Hippocampus , half-life , Cerebral cortex
Journal title :
Free Radical Biology and Medicine
Journal title :
Free Radical Biology and Medicine