Title of article :
Fiber-Optic Luminescent Sensors with Composite Oxygen-Sensitive Layers and Anti-Biofouling Coatings
Author/Authors :
Hildebrand، G. نويسنده , , Moreno-Bondi، M. C. نويسنده , , Navarro-Villoslada، F. نويسنده , , Orellana، G. نويسنده , , Vick، T. نويسنده , , Driver، M. نويسنده , , Liefeith، K. نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Abstract :
Anti-biofouling polymers containing phosphorylcholine (PC)-substituted methacrylate units have been prepared by copolymerization with dodecyl methacrylate and used to coat luminescent oxygen sensors. Nanometer-sized coatings of such materials are shown to reduce significantly the adhesion of marine bacteria (more than 70%) and thrombocytes (more than 90%) to the surface of tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II)-doped silicone layers. A thorough analytical characterization of both the PC-coated and the uncoated dyed films has demonstrated that the anti-biofouling layers do not alter dramatically the performance of the fiber-optic oxygen sensors in aqueous media and are mechanically stable for more than one year of continuous immersion. The slope of the linear calibration plots in the 0-8 mg L-1 oxygen concentration range (ca. 1.0 L mg-1) decreases 8-11% after applying the 50-nm protective layer with no change in the sensor precision (1.1-1.9% RSD, n = 6). The response time of the 200-mu m O2-sensitive layers (1.5-6 min) increases up to 2-fold, depending on the nature of the PC polymer used, but the temperature effect on the sensor response (0.020 L mg-1 degreeC-1) remains essentially unchanged. Oxygen detection limits as low as 0.04 mg L-1 have been measured with the coated optodes. The novel biofouling-resistant optosensors have been successfully validated against a commercial oxygen electrode and are shown to respond faster than the electrochemical device for large oxygen concentration changes. The biomimetic coatings will be particularly useful for drift-free long-term operation of environmental optosensors and in vivo fiber-optic oxygen analyzers.
Keywords :
High-performance liquid chromatography-mass spectrometry (LC-MS) , Solid-phase extraction (SPE) , Trifolium pratense , red clover , Isoflavone glycoside 6"-O-malonates , Isoflavone glycoside 6"-O-acetates
Journal title :
Analytical Chemistry
Journal title :
Analytical Chemistry