Title of article :
Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase
Author/Authors :
Sandeep Raha، نويسنده , , A. Tomoko Myint، نويسنده , , Leslie Johnstone، نويسنده , , Brian H. Robinson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Human NADH CoQ oxidoreductase is composed of a total of 43 subunits and has been demonstrated to be a major site for the production of superoxide by mitochondria. Incubation of rat heart mitochondria with ATP resulted in the phosphorylation of two mitochondrial membrane proteins, one with a Mr of 6 kDa consistent with the NDUFA1 (MWFE), and one at 18kDa consistent with either NDUFS4 (AQDQ) or NDUFB7 (B18). Phosphorylation of both subunits was enhanced by cAMP derivatives and protein kinase A (PKA) and was inhibited by PKA inhibitors (PKAi). When mitochondrial membranes were incubated with pyruvate dehydrogenase kinase, phosphorylation of an 18kDa protein but not a 6kDa protein was observed. NADH cytochrome c reductase activity was decreased and superoxide production rates with NADH as substrate were increased. On the other hand, with protein kinase A-driven phosphorylation, NADH cytochrome c reductase was increased and superoxide production decreased. Overall there was a 4-fold variation in electron transport rates observable at the extremes of these phosphorylation events. This suggests that electron flow through complex I and the production of oxygen free radicals can be regulated by phosphorylation events. In light of these observations we discuss a potential model for the dual regulation of complex I and the production of oxygen free radicals by both PKA and PDH kinase.
Keywords :
Reactive oxygen species , Pyruvate dehydrogenase kinase , Protein kinase A , Coelenterazine , Complex I , free radicals , mitochondria
Journal title :
Free Radical Biology and Medicine
Journal title :
Free Radical Biology and Medicine