Title of article :
Overexpression of human peroxiredoxin 5 in subcellular compartments of chinese hamster ovary cells: effects on cytotoxicity and DNA damage caused by peroxides
Author/Authors :
Ingrid Banmeyer، نويسنده , , Cécile Marchand، نويسنده , , Catherine Verhaeghe، نويسنده , , Bénédicte Vucic، نويسنده , , Jean-François Rees، نويسنده , , Bernard Knoops، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
13
From page :
65
To page :
77
Abstract :
Peroxiredoxin 5 is a mammalian thioredoxin peroxidase ubiquitously expressed in tissues. Peroxiredoxin 5 can be intracellularly localized to mitochondria, peroxisomes, the cytosol, and, to a lesser extent, the nucleus. This remarkably wide subcellular distribution compared with the five other mammalian peroxiredoxins prompted us to further investigate the antioxidant protective function of peroxiredoxin 5 in mammalian cells according to its subcellular localization. Chinese hamster ovary cells overexpressing human peroxiredoxin 5 in the cytosol, in mitochondria, or in the nucleus were established by stable transfection. Cells overexpressing peroxiredoxin 5 were exposed for 1 h to low or acute oxidative stress with exogenously added hydrogen peroxide or tert-butylhydroperoxide. Cell protection conferred by peroxiredoxin 5 was evaluated by clonogenicity and lactate dehydrogenase assays. Overexpressing peroxiredoxin 5 in either the cytosolic, mitochondrial, or nuclear compartment significantly reduced cell death, with more effective protection with overexpression of peroxiredoxin 5 in mitochondria, confirming that this organelle is a major target of peroxides. Moreover, we evaluated, with the comet assay, nuclear DNA damage induced by hydrogen peroxide or tert-butylhydroperoxide. Overexpression of peroxiredoxin 5 in the nucleus significantly decreased DNA damage induced by both peroxides. In conclusion, the present study suggests that multiple subcellular targeting of peroxiredoxin 5 in mammalian cells can be implicated in antioxidant protective mechanisms under nonpathological conditions but also during acute oxidative stress caused by peroxides occurring in pathophysiological situations.
Keywords :
Cytosol , Nucleus , peroxide , free radicals , mitochondria , DNA damage , Peroxiredoxin , Thioredoxin peroxidase , oxidative stress
Journal title :
Free Radical Biology and Medicine
Serial Year :
2004
Journal title :
Free Radical Biology and Medicine
Record number :
519681
Link To Document :
بازگشت