Title of article :
Evidence for rapid “metabolic switching” through lipoprotein lipase occupation of endothelial-binding sites
Author/Authors :
Thomas Pulinilkunnil، نويسنده , , Ashraf Abrahani، نويسنده , , Jospy Varghese، نويسنده , , Nathan Chan، نويسنده , , Irvin Tang، نويسنده , , Sanjoy Ghosh، نويسنده , , Jerze Kulpa، نويسنده , , Michael Allard، نويسنده , , Roger Brownsey، نويسنده , , Brian Rodrigues، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
11
From page :
1093
To page :
1103
Abstract :
During diabetes, impaired glucose transport and utilization by the heart switches energy production to exclusive β-oxidation of fatty acid (FA). In the current study, we examined the contribution of cardiac lipoprotein lipase (LPL) towards providing FA to the diabetic heart. Streptozotocin (STZ) caused an augmentation of LPL activity at the coronary lumen, an effect duplicated by diazoxide (DZ). With DZ, the amplification of LPL at the coronary luminal surface was determined to be exceptionally rapid. Interestingly, unlike DZ, the capability of hearts from STZ animals to maintain this amplified LPL activity was sustained in vitro. This increased enzyme in the hyperglycemic heart is likely unrelated to an increase in the number of capillary endothelial LPL-binding sites. Our data imply that binding sites for LPL in the control rat heart are only partly occupied by the enzyme and diabetes rapidly initiates filling of all of these sites. Phloridzin treatment of STZ animals normalized plasma glucose with no effect on luminal LPL suggesting that the effects of diabetes on LPL are also largely independent of changes in blood glucose. Both 2 and 8 U of insulin normalized plasma glucose in DZ-treated animals but only 8 U reversed DZ-induced augmentation of cardiac luminal LPL. Our data suggest that impaired intracellular glucose utilization allows rapid vectorial transfer of LPL to unoccupied binding sites to supply the diabetic heart with excess FA. The persistence of increased coronary luminal LPL even in a setting of normoglycemia may provide excessive FA to the diabetic heart with deleterious consequences over the long term.
Keywords :
LPL , STZ , Diazoxide , Malonyl-CoA , insulin
Journal title :
Journal of Molecular and Cellular Cardiology
Serial Year :
2003
Journal title :
Journal of Molecular and Cellular Cardiology
Record number :
528845
Link To Document :
بازگشت