• Title of article

    Apatite layer-coated titanium for use as bone bonding implants

  • Author/Authors

    Wei-Qi Yan، نويسنده , , Takashi Nakamura، نويسنده , , Keiichi Kawanabe، نويسنده , , Shigeru Nishigochi، نويسنده , , Masanori Oka، نويسنده , , Tadashi Kokubo، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1997
  • Pages
    6
  • From page
    1185
  • To page
    1190
  • Abstract
    For development of thin bioactive coatings on metal implants, a dense and uniform apatite layer was coated onto titanium (Ti) implants in situ by using a new biomimetic method, which is composed of apatite nucleation and growth steps in simulated body fluid (SBF). Analysis of the coatings by thin film X-ray diffraction and scanning electron microscopy-energy dispersive X-ray microanalysis (SEM-EMPA) before implantation showed that its characteristics were very similar to those of natural bone. The coated and uncoated rectangular plates were bilaterally implanted into the tibial proximal metaphyses of rabbits. After 6, 10 and 25 weeks post-implantation, the bone bonding and bone formation at the bone-implant interfaces were evaluated by a detachment test and undecalcified histological examination. Mechanical testing in tension showed that the failure load of apatite layercoated Ti implants was significantly higher than that of uncoated control at each time period (all P < 0.001). Histologically, it was shown that bone was deposited directly onto the apatite coating without any intervening soft tissue, while in the paired controls, interpositional soft tissue was seen at the bone-implant interface. By SEM-EPMA, a uniform calcium- and phosphorus-rich layer was detected between the coated implants and bone, but not in uncoated controls at either earlier or later time periods. The results indicate that the apatite layer deposited on Ti in situ may significantly increase the bone bonding strength by providing a bioactive surface, which allows for an early bone apposition to the implant. In addition, the apatite layer-coated Ti produced by the biomimetic process may fulfil the requirements of favourable thin coatings and strong adhesion at the metal-coating interface.
  • Keywords
    biomimetic method , Apatite layer , Titanium , bone bonding , coating implant
  • Journal title
    Biomaterials
  • Serial Year
    1997
  • Journal title
    Biomaterials
  • Record number

    542834