Title of article
Atomic force microscopy for characterization of the biomaterial interface
Author/Authors
Christopher A. Siedlecki، نويسنده , , Roger E. Marchant، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1998
Pages
14
From page
441
To page
454
Abstract
The molecular processes that occur at the interface of an implanted biomaterial determines the host response, including phenomena such as protein adsorption, conformational changes, and subsequent interactions with cellular components. Until recently, such processes could not be observed directly. Over the past decade, atomic force microscopy (AFM) has provided mechanistic insights into the molecular level interactions that occur at the biomaterial interface. Several unique operational modes have been developed which utilize intermittent contact with the sample and decrease applied shear forces. These dynamic modes also can be used to study the role of different structural components on biomaterial micromechanical properties. Force detection techniques allow molecular level studies of individual receptor-ligand binding events, and force mapping for determining structure/function relationships. Advancements in tip manufacturing, image processing techniques, the use of model surfaces and labeling all have contributed to the advancement of the AFM as a state-of-the-art research instrument. In this report, we examine the applicability of the AFM to the study of biomaterials and cell/molecular interactions.
Journal title
Biomaterials
Serial Year
1998
Journal title
Biomaterials
Record number
542938
Link To Document