Title of article :
Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering
Author/Authors :
Weiyuan John Kao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
9
From page :
2213
To page :
2221
Abstract :
Macrophage is a central cell type in directing host inflammatory and immune processes; hence, its response to biomaterials (i.e. adhesion and giant cell formation) has a direct impact on material biostability and biocompatibility. In this paper, several in vitro and in vivo techniques from previously published results and current investigations are highlighted and presented to demonstrate means of delineating a part of the complex molecular mechanisms involved in the interaction between biomaterials and macrophages. Complement component C3 was found critical in mediating the initial adhesion of human macrophages on medical-grade polyetherurethaneureas. From radioimmunoassay studies, the presence of a diphenolic antioxidant additive in polyetherurethaneureas increased the propensity for complement upregulation but did not affect adherent macrophage density. The subcutaneous cage-implant system was utilized to confirm the role of interleukin-4 in the fusion of adherent macrophages to form foreign body giant cells on polyurethanes in vivo. To probe the function-structural relationship of macrophage-active proteins, fibronectin was employed as a model in the formulation of synthetic oligopeptide mimetics. Peptides were grafted onto previously developed, non-cell adhesive polyethyleneglycol-based networks. The results indicate that grafted tripeptide RGD sequence supported higher adherent macrophage density than surfaces grafted with other peptides such as PHSRN and PRRARV sequences. However, the formation of foreign body giant cells on peptide-grafted networks was highly dependent on the relative orientation between PHSRN and RGD sequences located in a single peptide.
Keywords :
Foreign body giant cells , Polyurethane , In#ammation , Polyethyleneglycol , peptide
Journal title :
Biomaterials
Serial Year :
1999
Journal title :
Biomaterials
Record number :
543391
Link To Document :
بازگشت