Title of article :
Synthesis and photopolymerization of N,N′-dimethyl,-N,N′-di(methacryloxy ethyl)-1,6-hexanediamine as a polymerizable amine coinitiator for dental restorations
Author/Authors :
Feng-Jun Nie، نويسنده , , Christopher N. Bowman، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
6
From page :
1221
To page :
1226
Abstract :
N,N′-dimethyl,-N,N′-di(methacryloxy ethyl)-1,6-hexanediamine (NDMH) was synthesized for the purpose of replacing both triethylene glycol dimethacrylate (TEGDMA) and the non-polymerizable amine which is added as a coinitiator in dental resin mixtures. 2,2-bis[4(2-hydroxy-3-methacryloxypropoxy)phenyl] propane (bis-GMA), camphorquinone (CQ) and ethyl-4-dimethylaminobenzoate (EDAB) were used as monomer, photoinitiator and coinitiator, respectively, in these model dental resin systems. Mixtures of bis-GMA/TEGDMA/CQ/EDAB and bis-GMA/TEGDMA/CQ/NDMH were found to reach final conversions of about 45%, slightly higher than bis-GMA/NDMH/CQ (40%) under comparable visible light irradiation conditions. In addition, samples cured to these conversions were tested with dynamic mechanical analysis. The bis-GMA/TEGDMA/CQ/EDAB, bis-GMA/TEGDMA/CQ/NDMH and bis-GMA/NDMH/CQ mixtures were found to have approximately the same glass transition temperature and modulus. Finally, the water sorption and solubility of bis-GMA/NDMH/CQ were higher than those of the bis-GMA/TEGDMA/CQ/EDAB, and bis-GMA/TEGDMA/CQ/NDMH. However, the values were still within the range of the ISO 9000ʹs standards. These results suggest that NDMH is a viable alternative to conventional photocuring dental resins, serving both as a diluent and coinitiator, since there are no large differences in physical and mechanical properties when using NDMH to replace the amine coinitiator and TEGDMA diluent. The key advantage to this system is that the dimethacrylate NDMH can copolymerize with bis-GMA and TEGDMA, limiting the amount of extractable amine.
Keywords :
Methacrylate with amine group , dental materials , photopolymerization
Journal title :
Biomaterials
Serial Year :
2002
Journal title :
Biomaterials
Record number :
544207
Link To Document :
بازگشت