Title of article :
Biostability and biocompatibility of a surface-grafted phospholipid monolayer on a solid substrate
Author/Authors :
Kwangmeyung Kim، نويسنده , , Chulhee Kim، نويسنده , , Youngro Byun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
9
From page :
33
To page :
41
Abstract :
We have previously demonstrated phosphorylcholine monolayer chemically grafted onto a methacryloyl-terminated solid substrate by in situ polymerization. The in situ polymerization was carried out at the interface between a pre-assembled acrylated phospholipid monolayer produced by vesicle fusion and a methacryloyl-terminated substrate using a water-soluble initiator, 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPD). Herein, we examined the biostability and biocompatibility of a surface-grafted phospholipid monolayer (poly-PC) on a methacryloyl-terminated substrate using a “wash off’ test, in vitro protein adsorption and in vivo cage implantation for time intervals of 4, 7, 14 and 21 days, respectively. In order to compare the biostability and biocompatibility of phospholipid surfaces on solid substrates, we used two types of phospholipid surfaces: a physically adsorbed phospholipid monolayer (PC) and a poly-PC. Atomic force microscopy and water contact angle measurements indicated that the poly-PC surface was more stable in PBS, Triton X-100 and to EO gas sterilization than the PC surface. The adsorption of proteins such as albumin, fibrinogen, IgG and human plasma proteins on the poly-PC surfaces were significantly reduced, in vitro. Moreover, the poly-PC surface greatly reduced macrophage adhesion and the formation of foreign body giant cells, in vivo.
Keywords :
In situ polymerization , biostability , Cytomimetic biomaterials , Biocompatibility , Phospholipid monolayer
Journal title :
Biomaterials
Serial Year :
2004
Journal title :
Biomaterials
Record number :
545169
Link To Document :
بازگشت