Title of article :
In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome
Author/Authors :
Adele Kim، نويسنده , , Eun Hye Lee، نويسنده , , Sung-Hee Choi، نويسنده , , Chong-Kook Kim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
9
From page :
305
To page :
313
Abstract :
Cationic lipids have been often used as one of the major components in making most promising non-viral gene delivery systems, whereas sodium cholate, a surfactant so-called edge activator has been used in preparing ultradeformable and ultraflexible liposomes called Transfersomes. Using both a cationic lipid, DOTAP and sodium cholate, a novel formulation of ultradeformable cationic liposome (UCL) has been prepared. The average particle size of this formulation was approximately 80 nm. The physical and chemical stabilities at two different temperatures (4°C and 20°C) were also evaluated for 60 days. The ultradeformability of new formulation was also assessed, and it has been proved that the formulation is deformable. In vitro transfection efficiency of plasmid DNA/UCL was assessed by the expression of green fluorescent protein (GFP) in four cell lines, OVCAR-3 (human ovarian carcinoma cells), HepG2 (human hepatoma cells), H-1299 (human lung carcinoma cells) and T98G (human brain carcinoma cells). The optimal ratio of DNA to liposome for maximal transfection efficiency was 1:14 (w/w) in all the cell lines except for the human brain carcinoma cells. The same formulation was tested for in vivo transfection efficiency and its retention time within the organs by applying the DNA/UCL complexes on hair-removed dorsal skin of mice non-invasively. It was found that genes were transported into several organs for 6 days once applied on intact skin.
Keywords :
skin , Non-invasive delivery , Transfersomes , Cationic-lipids
Journal title :
Biomaterials
Serial Year :
2004
Journal title :
Biomaterials
Record number :
545197
Link To Document :
بازگشت