Title of article :
Synthesis and characterization of acrylic terpolymers with RGD peptides for biomedical applications
Author/Authors :
Garland W. Fussell، نويسنده , , Stuart L. Cooper، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
The goal of this research was to design a biomaterial, using acrylic terpolymers, which could support endothelial cells and function in small diameter vascular graft applications. Hexyl methacrylate (HMA) and octyl methacrylate (OMA) were used as comonomers to produce a material with a low glass transition temperature (Tg). Methacrylic acid (MAA) was used to provide ionic character, and methyl methacrylate (MMA) was selected because of its wide usage in biomedical applications. Cation neutralization was employed to modify the mechanical properties. RGD-based peptide sequences were attached to promote endothelial cell adhesion, because vascular grafts seeded with endothelial cells have fewer problems with thrombosis. The two methods used to incorporate peptide sequences were a chain transfer reaction during polymerization, and a coupling reaction attaching the peptides to carboxyl groups on the polymer after polymerization. The goal of this research was to design a biomaterial, using acrylic terpolymers, which could support endothelial cells and function in small diameter vascular graft applications. Hexyl methacrylate (HMA) and octyl methacrylate (OMA) were used as comonomers to produce a material with a low glass transition temperature (Tg). Methacrylic acid (MAA) was used to provide ionic character, and methyl methacrylate (MMA) was selected because of its wide usage in biomedical applications. Cation neutralization was employed to modify the mechanical properties. RGD-based peptide sequences were attached to promote endothelial cell adhesion, because vascular grafts seeded with endothelial cells have fewer problems with thrombosis. The two methods used to incorporate peptide sequences were a chain transfer reaction during polymerization, and a coupling reaction attaching the peptides to carboxyl groups on the polymer after polymerization.
Keywords :
Chain transfer , acrylic , RGD , neutralization , Vascular grafts
Journal title :
Biomaterials
Journal title :
Biomaterials