• Title of article

    Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE

  • Author/Authors

    Ebru Oral، نويسنده , , Arnaz S. Malhi، نويسنده , , Orhun K. Muratoglu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    9
  • From page
    917
  • To page
    925
  • Abstract
    Adhesive/abrasive wear in ultra-high molecular weight polyethylene (UHMWPE) has been minimized by radiation cross-linking. Irradiation is typically followed by melting to eliminate residual free radicals that cause oxidative embrittlement. Irradiation and subsequent melting reduce the strength and fatigue resistance of the polymer. We determined the radiation dose dependence and decoupled the effects of post-irradiation melting on the crystallinity, mechanical properties and fatigue crack propagation resistance of room temperature irradiated UHMWPE from those of irradiation alone. Stiffness and yield strength, were largely not affected by increasing radiation dose but were affected by changes in crystallinity, whereas plastic properties, ultimate tensile strength and elongation at break, were dominated at different radiation dose ranges by changes in radiation dose or crystallinity. Fatigue crack propagation resistance was shown to decrease with increase in radiation dose and with decrease in crystalline content. Morphology of fracture surfaces revealed loss of ductility with increase in radiation dose and more detrimental effects on ductility at lower radiation doses after post-irradiation melting.
  • Keywords
    Polyethylene , Plasticity , Arthroplasty , Fatigue , Cross-linking , electron beam
  • Journal title
    Biomaterials
  • Serial Year
    2006
  • Journal title
    Biomaterials
  • Record number

    546721