• Title of article

    Knowledge-based spectroscopic assignment

  • Author/Authors

    Wang، Jin نويسنده , , Nickerson، Bradford G. نويسنده , , Lees، Ronald M. نويسنده , , Xu، Li-Hong نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    -216
  • From page
    217
  • To page
    0
  • Abstract
    This study develops Bayesian methods for estimating the parameters of a stochastic switching regression model. Markov Chain Monte Carlo methods, data augmentation, and Gibbs sampling are used to facilitate estimation of the posterior means. The main feature of these methods is that the posterior means are estimated by the ergodic averages of samples drawn from conditional distributions, which are relatively simple in form and more feasible to sample from than the complex joint posterior distribution. A simulation study is conducted comparing model estimates obtained using data augmentation, Gibbs sampling, and the maximum likelihood EM algorithm and determining the effects of the accuracy of and bias of the researcherʹs prior distributions on the parameter estimates.
  • Keywords
    Inference engine , Molecular spectroscopic assignment , Methanol , Knowledge-based system , Physics knowledge base
  • Journal title
    DATA & KNOWLEDGE ENGINEERING
  • Serial Year
    2001
  • Journal title
    DATA & KNOWLEDGE ENGINEERING
  • Record number

    6048