Title of article :
Data-driven linguistic modeling using relational fuzzy rules
Author/Authors :
A.E.، Gaweda, نويسنده , , J.M.، Zurada, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-120
From page :
121
To page :
0
Abstract :
This paper presents a new approach to fuzzy rule-based modeling of nonlinear systems from numerical data. The novelty of the approach lies in the way of input partitioning and in the syntax of the rules. This paper introduces interpretable relational antecedents that incorporate local linear interactions between the input variables into the inference process. This modification improves the approximation quality and allows for limiting the number of rules. Additionally, the resulting linguistic description better captures the system characteristics by exposing the interactions between the input variables.
Journal title :
IEEE TRANSACTIONS ON FUZZY SYSTEMS
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON FUZZY SYSTEMS
Record number :
60963
Link To Document :
بازگشت