• Title of article

    Online entropy manipulation: stochastic information gradient

  • Author/Authors

    D.، Erdogmus, نويسنده , , II، Hild, K.E., نويسنده , , J.C.، Principe, نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -241
  • From page
    242
  • To page
    0
  • Abstract
    Entropy has found significant applications in numerous signal processing problems including independent components analysis and blind deconvolution. In general, entropy estimators require O(N/sup 2/) operations, N being the number of samples. For practical online entropy manipulation, it is desirable to determine a stochastic gradient for entropy, which has O(N) complexity. In this paper, we propose a stochastic Shannonʹs entropy estimator. We determine the corresponding stochastic gradient and investigate its performance. The proposed stochastic gradient for Shannonʹs entropy can be used in online adaptation problems where the optimization of an entropy-based cost function is necessary.
  • Keywords
    Power-aware
  • Journal title
    IEEE Signal Processing Letters
  • Serial Year
    2003
  • Journal title
    IEEE Signal Processing Letters
  • Record number

    62050