Title of article :
Predictive model for survival at the conclusion of a damage control laparotomy
Author/Authors :
Noriaki Aoki، نويسنده , , Matthew J. Wall Jr.، نويسنده , , Janez Demsar، نويسنده , , Blaz Zupan، نويسنده , , Thomas Granchi، نويسنده , , Martin A. Schreiber، نويسنده , , John B. Holcomb، نويسنده , , Mike Byrne، نويسنده , , Kathleen R. Liscum، نويسنده , , Grady Goodwin، نويسنده , , J. Robert Beck، نويسنده , , Kenneth L. Mattox، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
6
From page :
540
To page :
545
Abstract :
Background: We employed modern statistical and data mining methods to model survival based on preoperative and intraoperative parameters for patients undergoing damage control surgery. Methods: One hundred seventy-four parameters were collected from 68 damage control patients in prehospital, emergency center, operating room, and intensive care unit (ICU) settings. Data were analyzed with logistic regression and data mining. Outcomes were survival and death after the initial operation. Results: Overall mortality was 66.2%. Logistic regression identified pH at initial ICU admission (odds ratio: 4.4) and worst partial thromboplastin time from hospital admission to ICU admission (odds ratio: 9.4) as significant. Data mining selected the same factors, and generated a simple algorithm for patient classification. Model accuracy was 83%. Conclusions: Inability to correct pH at the conclusion of initial damage-control laparotomy and the worst PTT can be predictive of death. These factors may be useful to identify patients with a high risk of mortality.
Journal title :
The American Journal of Surgery
Serial Year :
2000
Journal title :
The American Journal of Surgery
Record number :
621000
Link To Document :
بازگشت