Title of article :
Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network
Author/Authors :
Yang، Jing نويسنده , , Liu، Jun نويسنده , , Liu، Xiang-Qun نويسنده , , Zhang، Hong-Yue نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
In this paper, fault detection and diagnosis of a permanent-magnet DC motor is discussed. Parameter estimation based on block-pulse function series is used to estimate the continuous-time model of the motor. The electromechanical parameters of the motor can be obtained from the estimated model parameters. The relative changes of electromechanical parameters are used to detect motor faults. A multilayer perceptron neural network is used to isolate faults based on the patterns of parameter changes. Experiments with a real motor validate the feasibility of the combined use of parameter estimation and neural network classification for fault detection and isolation of the motor
Journal title :
IEEE Transactions on Industrial Electronics
Journal title :
IEEE Transactions on Industrial Electronics